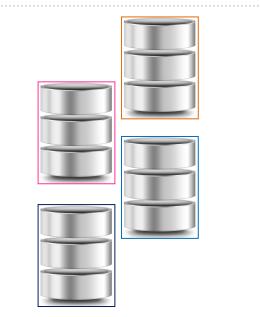


Big Data for MNO


Sept 2017

www.cubro.com

Big Data / Data Enrichment

The illustration shows the silo architecture of the past in which each system produces XDRs, counter and logs and other type of information which is stored in many different places, formats and DBs.

The information can only be correlated by specially designed software and often the raw data is not accessible to the customer.

Each request for a new report generates efforts and cost. As a result, a lot of useful information is not used and often there is a data overlap. This generates additional cost.

Big Data is not just a buzzword. This approach brings real advantage to customers. Many data sources feed one big data storage system. This system is a document storage system, which can handle a very large amount of unstructured data.

- One data storage for all types of data
- One reporting tool
- · One point of securing data
- One managed
 Infrastructure

http://bigdata-madesimple.com/11-interesting-big-data-cas e-studies-in-telecom/

- The only asset from Facebook and Google is their data!
- As a MNO you are sitting on a big treasure, your data is processed by your network every second.
- You can harvest this fortune, to use the data internally or resell the data to third party.
- Cubro can help you to make money out of your Data.
- Cubro can help to switch your monitoring systems from an OPEX grave to a cash cow.

Big Data is a Treasure for MNO

Usage of Geolocation Data :

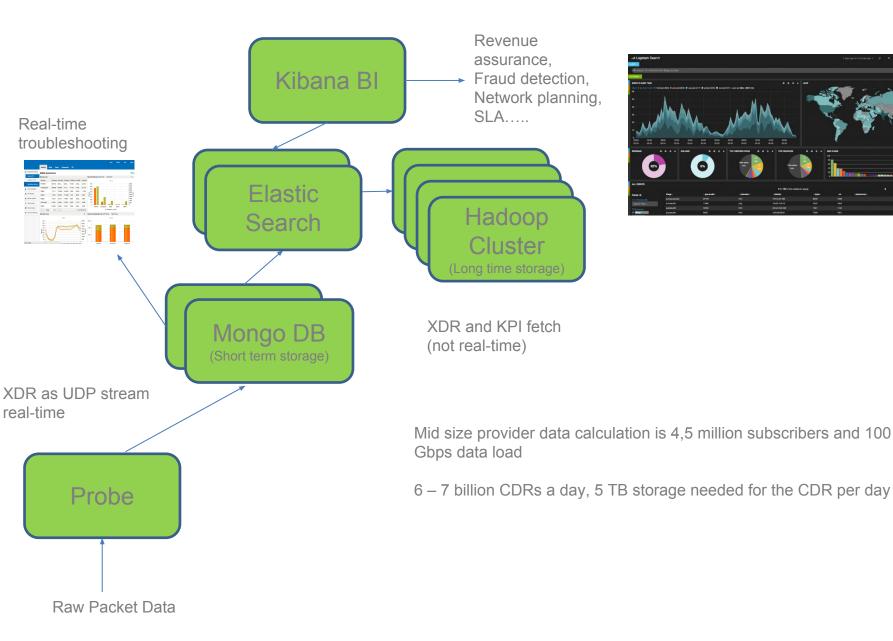
Marketing: This data can be used to analyze customer behavior in general; the usage of this data is endless. Here are few examples:

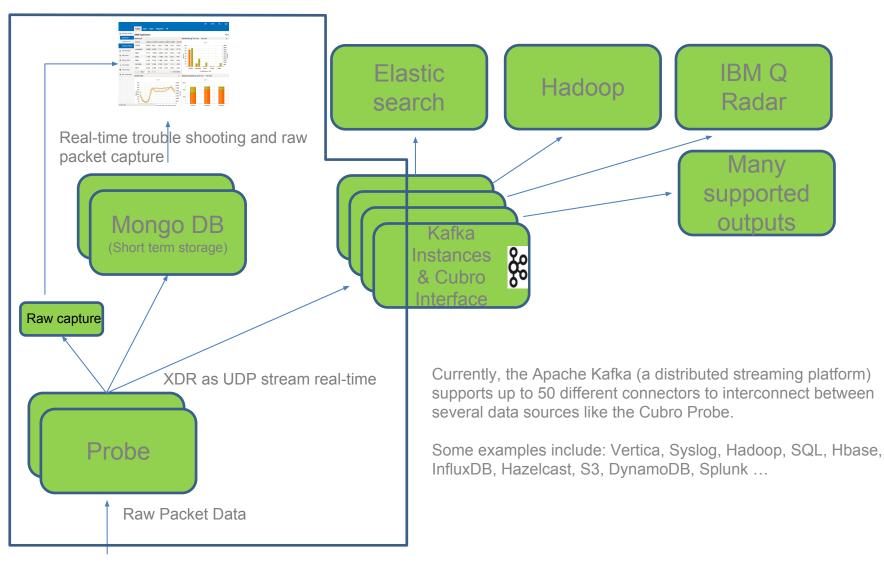
How long customers stay at a location How often is a customer joining a specific location. Which transport medium is the customer using to come to a location.

With this information it is possible to optimize the availability of resources. (Public Transportation, more staff at the parking place, optimise the pricing, etc)

Security: With this data security threats can be detected at a very early stage, because it is possible to see how many people are moving towards a place, and if this is an unusual behavior then Law and Enforcement can react faster.

Find persons when they dial an emergency number, or are in a catastrophic scenario.


- **Events:** Analyzing customer movements at big events to avoid panic and rush situation.
- **Traffic:** With this data traffic steering can be automated by changing traffic light configuration.



Big Data Integration Mobile Networks

Cubro playground

Gn signaling record, GTPv2 signaling record, S3 signaling record, DNS signaling record, User service flow record. MMS MO signaling record, MMS MT signaling record, WAP CONNECT record, WAP signaling record, ONLINE VIDEO record. FTP record. RTSP record. E MAIL record. VOIP record. P2P record. IM record. S1 signaling record, S1 EMM signaling record, S1 ESM signaling record, S1AP protocol switching record,

S1AP protocol RAB record, S1AP protocol management record, S6a record. S1 SMS record, S1 CS fallback record. SGS MM signaling record, SGS CS signaling record, X2 interface management record, X2 interface switching record, UU signaling record, UU switching record, UU-community measurement. **UU-UE** measurement. attach signaling, detach signaling, PDP Activation, PDP Deactivation. PDP Modification. RAU, BSSGP RANAP. Relocation. Service Request, 2G Paging

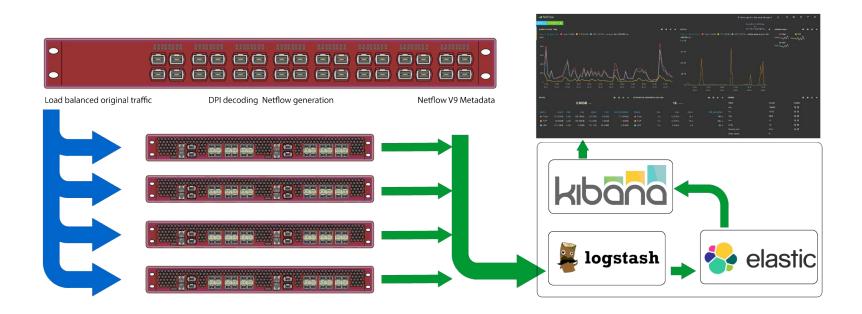
User Service Flow Record Fields

Time of Data Transmission User IP Address State Code Network Code Cell ID Tracking Code Location Code Routing Area ID 2G/3G Network ID User Location Information IMSI Subscriber number IMFI APN Charging ID SGSN User Plane Transmission IP **GGSN User Plane** Transmission IP Destination IP SGSN User Plane TFID **GGSN User Plane** TEID

User Port Destination Port TCP FIN times Uplink Dropped Packets Number **Downlink Dropped** Packets Number Total Number Of Uplink Data Packets Total Number Of **Downlink Data Packets** Uplink Traffic **Downlink Traffic** Window Size MSS Size **RST** Direction Bearing Layer Protocol Fragments flag SYN Number In TCP Linking Successful Identification Of Three Shake Hands SYN ACK Number In TCP Linking

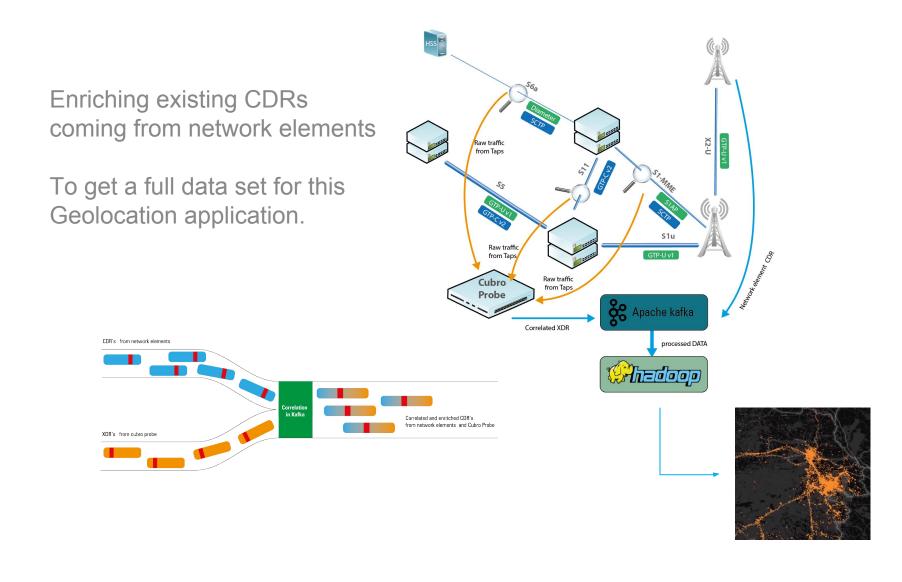
ACK Number InTCP Linking **Uplink IP Fragment Number** Downlink IP Fragment Number Disordered packet number of Uplink TCP Disordered packet number of Downlink TCP Retransmission packet number of Uplink TCP Retransmission packet number of Downlink TCP **TCP RESET Number** Direction Protocol Type Response delay Of TCP Linking Confirmation delay Of TCP Linking Delay Between TCP Linking And The First Request Delay Between he First Request And The First ACK

Field Name	Name	Туре	Length	Default Value	Meaning/Notes
CDR_HEADER	CDR Header Structure		52		All CDR Header Structure
trans_time	Time of Data Transmission	uint64_delay	8	0	Unit: cycle
user_ip	User IP Address	uint8	16		User IP Address (ipv4 or ipv6)
mcc	State Code	uint16	2	OxFFFF	State code
mnc	Network Code	uint16	2	0xFFFF	Network code
eci/cell_id	Cell ID	uint32	4	OxFFFFFFFF	Cell ID / (fill in eci when LTE , fill in ci when 2G , fill in sac when 3G)
tac	Tracking Code	uint16	2	0xFFFF	Tracking code / using in LTE
lac	Location Code	uint16	2	0xFFFF	Location code
rac	Routing Area ID	uint8	1	0xFF	Routing area ID
rat	2G/3G Network ID	uint8	1	0xFF	2G/3G network ID
uli	User Location Information	uint8	1	0xFF	0: CGI , 1: SAI , 2: RAI
reserved	Reserved	uint8	1		
imsi	IMSI	string	18	NULL	Subscriber IMSI
msisdn	Subscriber number	string	24	NULL	Subscriber number
imei	IMEI	string	18	NULL	IMEI
apn	APN	string	32	NULL	APN
charge id	Charging ID	uint32	4	0	Charging information
sgsn_u_ip	SGSN User Plane Transmission IP	uint8	16	0	SGSN user plane transmission IP
ggsn_u_ip	GGSN User Plane Transmission IP	uint8	16	0	GGSN user plane transmission IP
dest_ip	Destination IP	uint8	16	0	Destination IP of application layer
sgsn_u_teid	SGSN User Plane TEID	uint32	4	0	SGSN User Plane TEID
ggsn_u_teid	TEID	uint32	4	0	GGSN User Plane TEID
user_port	User Port	uint16	2	0	User port number
dest_port	Destination Port	uint16	2	0	Destination port number
reserved1	Reserved1	uint8	1		
tcp_fin_pkts	TCP FIN times				
up_tcp_dropped_pkts	Uplink Dropped Packets Number				
down_tcp_dropped_pkts	Downlink Dropped Packets Number				
up_packets	Total Number Of Uplink Data Packets	uint32	4	0	Total number of uplink data packets
down_packets	Total Number Of Downlink Data Packets	uint32	4	0	Total number of downlink data packets
up_bytes	Uplink Traffic	uint32	4	0	Total uplink traffic, unit: Byte
down_bytes	Downlink Traffic	uint32	4	0	Total downlink traffic, unit: Byte
tcp_window_size	Window Size	uint16	2	0	Window size, the window after TCP linking negotiation
tcp_mss_size	MSS Size	uint16	2	0	MSS size
tcp_reset_direction	RST Direction	uint32	4	0	Launch direction of TCP connection resetting
proto_type	Bearing Layer Protocol	uint8	1	0xFF	Two types of bearing layer protocol 6 : TCP 17 : UDP
segment_flag	Fragments flag	uint8	1	4	Pure start fragment Pure intermediate fragment (period) Pure end fragment(RST/FIN) Pure end fragment (Timeout) Start&end fragment(RST/FIN) Start&end fragment(Timeout)


These are the fields which are available in the user service flow XDR

Example for a multiple 100 Gbit flow monitoring solution

Each Probe can support 60 Gbit traffic with DPI analysis enabled


and 120 Gbit traffic without DPI analysis

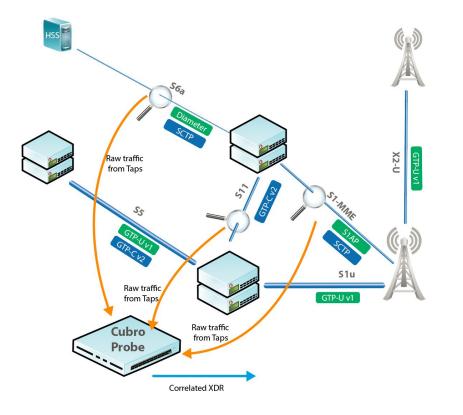
Typical Application Data Enrichment

for Geolocation application in Mobile Networks

The request was to generate subscriber based, high quality real time geolocation data to generate revenue out of this data for the MNO.

Challenge : Real time, all connected subscribers, better than cell id

- real time means a lot processing power is needed
- all subscribers means a lot information must be handled per second
- better location cell id means to get data from UTRAN interfaces or CDRs from eNodeB
 - real time correlation of all core interfaces with a IMSI refill rate better than 95 % (Cubro reached 97 - 98 %)
 - near real time correlation of core and UTRAN CDRs to combine the subscriber
 - information: terminal model, IMSI with the cell id, the antenna vector
 - receiving HF power from eNodeB to calculate an exact location.



Challenge : Real time means a lot processing power is needed

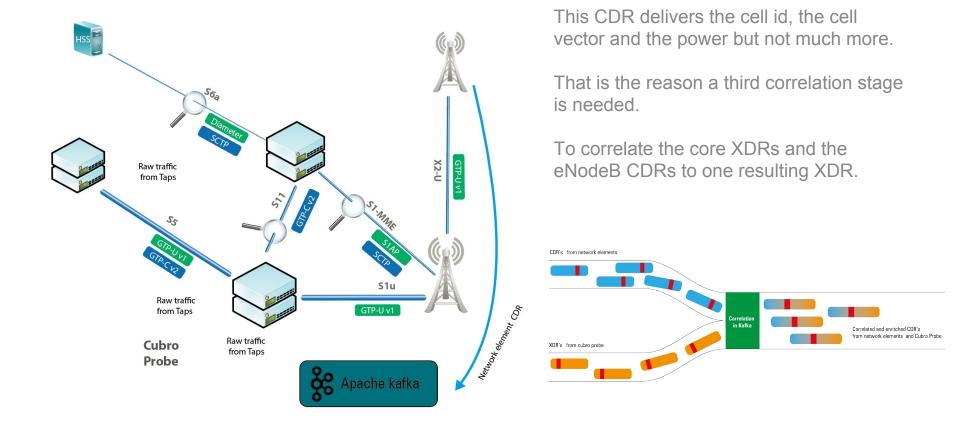
Even in a smaller network there are multi-hundred thousand events per second.

All these events from all core interfaces (S1MME, S11, S6A, S3, S10) must be captured, deciphered,

analyzed in real time to reach a high IMSI refill rate for each XDR

The probe produces several XDRs, typically one per interface, this is the first correlation stage on XDR level.

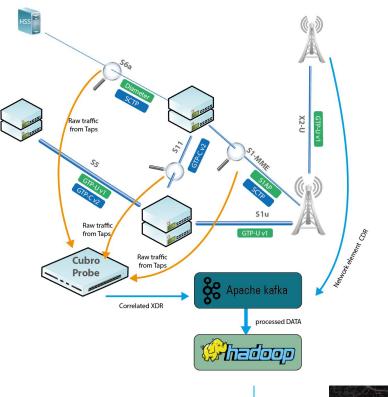
The second stage of correlation is to build one combined XDR.


This XDR holds several correlated information from multiple interfaces, like

IMSI, IMEI, CELL ID, APN , Date, TIME and some more.

Geolocation Application in Mobile Networks

Challenge : Better location cell id means to get data from UTRAN interfaces or CDRs from eNodeB To get this information there are two options - tap X2 interface or get the information from the eNodeB. The difficulty is that this CDR from the eNodeB does not have all the information what is needed to fulfil the task.



This third correlation stage is done in Apache Kafka cluster.

The resulting data is then stored in a hadoop cluster for further processing.

The real challenge is the quality of the XDRs, only with real time decoding of all interfaces - an IMSI refill rate of > 95 % is mandatory, to produce useful results in such an application.

The ROI on this project was 1 year. Big Data could be treasure for MNO. Cubro can help to harvest this !

Thank you

需要详细信息?请通过sales@hkaco.com联系我们 | 电话: 400-999-3848 **办事处:** 广州 | 北京 | 上海 | 深圳 | 西安 | 武汉 | 成都 | 沈阳 | 香港 | 台湾 | 美国